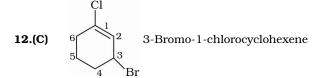
JEE Main Archive DTS-1

- **1.(C)** Charcoal is used for colored impurity.
 - Mixture of o-nitrophenol and p-nitrophenol can be separated by steam distillation.
 - Crude naphtha is separated by fractional distillation.

Mixture of glycerol of and sugar can be separated by distillation under reduced pressure.

2.(B)
$$\bigcap_{\mu \neq 0} , \quad CH_3 - C \equiv C - CH_3 \quad , \quad CH_3 - CH_2 - C \equiv C - H \quad , \quad CH_2 = CH - C \equiv C - H \\ \mu = 0 \qquad \qquad \mu \neq 0 \qquad \qquad \mu \neq 0$$

3.(D) 2, 3-dichlorobutane


- **5.(A)** CH $_3$ Cl, CH $_2$ Cl, CHCl $_3$, CCl $_4$ $_{\mu=1.87D}$ $_{\mu=1.59D}$ $_{\mu=1.01D}$ $_{\mu=0.0D}$
- **6.(A)** 1-chloropentane
- **7.(A)** $H_2C = CH C \equiv N(sp^2, sp^2, sp, sp)$, $HC \equiv CH C \equiv CH(sp, sp, sp, sp)$ $CH_2 = C = C = CH_2(sp^2, sp, sp, sp^2)$, $CH_2 = CH - CH = CH_2(sp^2, sp^2, sp^2)$
- **8.(C)** Acetonitrile $(CH_3 C \equiv N)$
- **9.(C)** 3, 3-dimethyl-1-cyclohexanol
- 10.(A) $6 \text{NaCN} + \text{FeSO}_4 \longrightarrow \text{Na}_4[\text{Fe}(\text{CN})_6] + \text{Na}_2\text{SO}_4$ $4 \text{FeCl}_3 + 3 \text{Na}_4[\text{Fe}(\text{CN})_6] \longrightarrow \text{Fe}_4[\text{Fe}(\text{CN})_6]_3 + 12 \text{NaCl}$
- 11.(C) RCONH₂ $\xrightarrow{\text{H}_2\text{SO}_4}$ $\xrightarrow{\text{NaOH}}$ $\xrightarrow{\text{NaOH}}$ 20 ml, 0.5 M

Eq. of ammonia = Eq. of H_2SO_4 used = Initial eq. of H_2SO_4 – Unused eq. of H_2SO_4 = $\left[\left(0.1\times2\times100\right)-\left(0.5\times20\right)\right]\times\frac{1}{1000}$

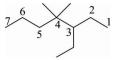
Mole of N atoms = mole of NH_3

$$= \frac{1}{1000} \left[\left(0.1 \times 2 \times 100 \right) - \left(0.5 \times 20 \right) \right] = \frac{1}{1000} \left[20 - 10 \right] = 0.01$$

Mole of N atoms = $2 \times \text{mole}$ of urea = $2 \times \frac{0.3}{60} = 0.01$

13.(B) Gaseous density depends upon molar mass. While heat of vapourization, boiling point and vapour pressure depends upon strength of inter molecular forces. C_2H_5OH shows H-bonding while CH_3OCH_3 do not show hydrogen bonding.

14.(C)


C	н	N	О
20	6.67	46.67	26.66
20	6.67	46.67	26.66
12	1	14	16
1.66	6.67	3.33	1.66
1.66	6.67	3.33	1.66
1.66	1.66	1.66	1.66
1	4	2	1

Empirical formula of compound is $\mathrm{CH_4N_2O}$ molecular formula is $\left(\mathrm{CH_4N_2O}\right)_n$

$$n=\frac{60}{60}=1$$

Compound is $\mathrm{NH_2CONH_2}$

15.(D)

The correct answer is 3-ethyl-4, 4-dimethylheptane.